- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Sur, Sanjib (4)
-
Sitar, Edward M (3)
-
Cai, Pingping (1)
-
Saadat, Moh Sabbir (1)
-
Sitar, Edward M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sitar, Edward M; Sur, Sanjib (, ACM)
-
Sitar, Edward M; Saadat, Moh Sabbir; Sur, Sanjib (, ACM MobiSys)
-
Cai, Pingping; Sitar, Edward M.; Sur, Sanjib (, Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing)null (Ed.)3D Point Cloud (PCD) is an efficient machine representation for surrounding environments and has been used in many applications. But a fast reconstruction of complete PCD for large environments remains a challenge. We propose AutoPCD, a machine-learning model that reconstructs complete PCDs, under sensor occlusion and poor lighting conditions. AutoPCD splits the PCD into multiple parts, approximates them by several 3D planes, and independently learns the plane features for reconstruction. We have experimentally evaluated AutoPCD in a large indoor hallway environment.more » « less
An official website of the United States government

Full Text Available